
Wireless Communications: Principle and Applications

Project Report:

Task Allocation in Distributed Service Networks

Xiao Feng, 5100309117, Wei Fan, 5100309131

BACKGROUND

Distributed service network(DSN) is a new generation distributed core

network architecture proposed by China Mobile Research Institute" It has

characteristics of the telecommunication services and mobile Internet services

such as fast, flexible, low cost and scalability.

DSN achieve traditional telecommunication network.s core functions in a

way of P2P. In addition, it can also provide the ability of sustained operations,

adaptive load balancing, distributed storage, dynamic resource scheduling and

other new networking capabilities, which on the one hand is to better support

mobile Internet services, on the other hand is able to achieve a lower cost

telecommunications services.

And fully distributed DNS shown as Figure 1. It.s functions spread to

access network node and external node, which will make full use of the access

network nodes.and terminal nodes.computing power, storage capacity and

bandwidth resources. Thanks to the distributed technologies like P2P, the

DSN will own many features that traditional client-server system don.t have,

such as distribution, homogenization, robustness, self-organization, Intelligent

routing and High cost performance. And now, the research scope of DSN is var-

1

Figure 1: fully distributed DNS

ious. There are some typical topics such as Internet business characteristics and

the implementation mechanism, DSN architecture research, Homogenization of

Super Node - Node architecture and P2P based research.

OUR TOPIC

A simple schematic diagram of DNS shown as Figure 2. In the center

is a super node, it can control other DSN node. Note that every DSN node

has the same function, just different in performance. And every DSN node is

connected to some tasks. At the same time, each task can be processed on any

DSN node. A task can be processed on the nearest node. But maybe at that

moment another node is idle and have a better performance than the nearest

node. So the task may be transmit to another node and processed in that node.

After the task is done, the result will be transmit back to the nearest node.

And the content of our research is how to allocate all tasks in fully distributed

DSN to make the sum of whole processing time and transmitting time to a

minimum.

2

Figure 2: schematic diagram of DNS

SIMPLE MODEL

N tasks

M DSN nodes

Oi the agent of task i directly connects with node Oi

Li work load of task i

Si processing speed of node for each task i when it runs k tasks

mij transport delay(time) between node i and j

bi the biggest number of tasks on node i

fij =

 1 task i runs on node j

0 other

3

ai task i runs on node ai,

ai =

N∑
j=1

fij · j

ni current number of tasks on node i, 0 ≤ ni ≤ bi,

ni =

N∑
j=1

fji

AIM:minimize total completion time

min
N∑
i=1

(maiOi
+

Li

Sainai

)

s.t.

∀i, ni ≤ bi
M∑
i=1

ni = N

∀task i,

M∑
j=1

fij = 1

Solve:Dynamic Programming

F (i, n1, n2...nM−1) represents the minimum total completion time among

the first i tasks, where node i runs n1 tasks.... nM = i− n1 − n2...nM−1

mapping vector(n1, n2...nM−1) to status delegate P , thus,F (i, n1, n2...nM−1)

could be represented byF (i, P)

F (i, P) = min{F (i− 1, P ′) + mjOi
+

Li

Sajj
}, 1 ≤ j ≤M

using Ai,P to store corresponding strategy,under P situation, i is best

running on node AiP

SIMPLE MODEL + BALANCED LOAD
4

Algorithm 1 minimum total completion time

Require: Input: Oi, Sij , Li, bi,mij ;

Ensure: Output:fij , ai, ni;

1: ∀i,∀P, F (i, P)←∞;

2: F(0,0) ← 0;

3: for (i ← 1 to N) do

4: for (P ← 0 to Pmax) do

5: if (P is legal) then

6: for (j ← 1 to M) do

7: if (nj ≤ bi&&F (i, P) < F (i− 1, P ′) +mjOi
+ Li

Sajj
) then

8: F (i, P)← F (i− 1, P ′) +mjOi
+ Li

Sajj
;

9: A(i, P)← j

10: end if

11: end for

12: end if

13: end for

14: end for

15: using A(i, P) to calculate fij , ai, ni

Add constraints to the allocation of tasks, we could achieve this by setting

deviation of work load on each node no bigger than a threshold value K,i.e.

∀node i,∀node j, |
N∑
k=1

fkiLk −
N∑
k=1

fkjLk| ≤ K

then the problem changes to

min

N∑
i=1

(maiOi
+

Li

Sainai

)

s.t.

∀node i, ni ≤ bi
M∑
i=1

ni = N

∀task i,
M∑
j=1

fij = 1

∀node i,∀node j, |
N∑
k=1

fkiLk −
N∑
k=1

fkjLk| ≤ K

we could solve this problem by slightly modifying the algorithm.

5

Algorithm 2 minimum total completion time with balanced load

Require: Input: Oi, Sij , Li, bi,mij ;

Ensure: Output:fij , ai, ni;

1: ∀i,∀P, F (i, P)←∞;

2: F(0,0) ← 0;

3: for (i ← 1 to N) do

4: for (P ← 0 to Pmax) do

5: if (P is legal) then

6: for (j ← 1 to M) do

7: if (nj ≤ bi&&F (i, P) < F (i− 1, P ′) +mjOi
+ Li

Sajj
) then

8: Recursively compute current load status on each node using A(i, P)

9: if (current load status + Li on node j is legal) then

10: F (i, P)← F (i− 1, P ′) +mjOi +
Li

Sajj
;

11: A(i, P)← j

12: end if

13: end if

14: end for

15: end if

16: end for

17: end for

18: using A(i, P) to calculate fij , ai, ni

Complicated Model
Remove the definition Sij, Li, bi, ni in Simple Model.

Add:

Each task i has a resource demand vector
−→
Di = (di1, di2...dik), k, the

number of total types of resources.

Each DSN node i has a resource vector
−→
Ri = (ri1, ri2...rik)

tij time needed on node i to finish task j

Problem:

min

N∑
i=1

(maiOi
+ taii)

6

s.t.

∀rij, rij ≥
N∑
k=1

fkidkj

∀task i,
M∑
j=1

fij = 1

This is an NP-Hard problem, which can not be solved by dynamic pro-

gramming.The time complexity could be represented by O(MN). However,

noticing that if tij is not quite different with each other, we could simplify the

problem by setting that we only allocate a task i among the first A nearest

DSN nodes to Oi,i.e.,the first A nodes which has the smallest mOij.

Then the time complexity could be reduced to O(AN), (A
M)N times of

before.We use backtracking algorithm to solve this problem.

Algorithm 3 Complicated Model:minimum total completion time

Require: Input: Oi,
−→
Ri,
−→
Di, tij ,mij ;

Ensure: Output:fij , ai;

1: PROC Backtracking(step,nowcost,
−→
R)

2: if (nowcost≥best) then
3: Return;

4: end if

5: if (step=n+1) then

6: best=nowcost;

7: update best strategy fij , ai

8: end if

9: for (each possible node j) do

10: if (
−→
Rallows node j to run task step) then

11: backtracking(step+1,nowcost+ tstep,j +mOstep,j ,
−→
R −

−−−→
Dstep);

12: end if

13: end for

14: ENDPROC

15: best←∞;

16: backtracking(1,0,
−→
R);

7

